
Multitasking on the Cray-2 and Cray Y-MP:

An Experimental Study

R. A. Fatoohi 1

Report RNR-88-001, December 1988

Sterling Software
NASA Ames Research Center

Moffett Field, CA 94035, USA

Abstract. This paper presents the results of an experiment to study the perfor-

mance of multitasking techniques on the Cray-2 and Cray Y-MP using a single

algorithm. The algorithm is a compact difference scheme for the solution of the

incompressible, two-dimensional, time dependent Navier-Stokes equations. Two

implementations of multitasking on both machines are considered. These are:

macrotasking (parallelism at the subroutine level) and microtasking (parallelism

at the do-loop level). These two techniques are briefly described. The imple-
mentation of the algorithm is discussed in relation to these techniques and the

results for three problem sizes are presented. The timing results for both tech-

niques using few processors are in general comparable on both machines. For

the eight processor case on the Cray ¥-MP, microtasking outperformed macro-

tasking for the small problems while the latter outperformed the former for the

larger problem. The best achieved processing rate on the Cray ¥-MP is 1.2

GFLOPS using macrotasking. Finally comparisons are made and conclusions
are drawn.

i This research was supported by NASA Contract No. NAS2-11555 while the author
was an employee of Sterling Software under contract to the Numerical Aerodynamic
Simulation Systems Division at NASA Ames Research Center.



1. Introduction

It is nowclearthat parallelismis the roadto increasedsupercomputerper-

formance.However,it is not clearwhetherthis parallelismshouldbeby wayof

a relatively few powerfulprocessorsin an MIMD organization or many much

less powerful processors in a SIMD organization. Both approaches have their

advocates.

There have been a substantial number of theoretical studies of the perfor-

mance of algorithms on parallel supercomputers but far fewer actual experimen-

tal studies. Insofar as MIMD supercomputers are concerned, there are even

fewer actual studies. Although multitasking has been available on the Cray

series of multiprocessor supercomputers since 1984, its use has been very limited.

The exceptions are some experiments on the Cray X-MP and Cray-2. Some

results of macrotasking (previously called multitasking) on the Cray X-MP fam-

ily were reported by Larson [9], Chen et al. [3], Seager [12], and Mandell [10].

Larson reported speedups of 1.86 to 1.89 on the Cray X-MP/2 for a particle-in-

cell code, a weather forecasting code, and a three dimensional seismic migration

code. Chen et al. used two sets of multitasking routines on the Cray X-MP/2 to

study the solution of symmetric linear systems using LU decomposition and

Cholesky factorization algorithms. They reported speedups of 0.76 to 1.80 by

using the standard multitasking routines and speedups of 1.39 to 1.92 by using a

set of assembly language (CAL) routines. Seager reported speedups of 1.54 to

1.95 on the Cray X-MP/2 and speedups of 2.69 to 2.90 on the Cray X-MP/4 for

the solution of symmetric linear systems using three coniugate gradient

methods. Mandell reported a speedup of 2.92 on the Cray X-MP/4 for a one



dimensional hydrodynamics code. Results of microtasking were first reported by

Misegades et al. [11] where they achieved speedups of 3.40 and 3.65 on the Cray

X-MP/4 for two CFD codes. Bieterman [2] reported speedups of 1.22 to 2.36 on

the Cray X-MF/4 using microtasking for the partial differential equation pack-

age PLTMG. On the Cray-2, Swisshelm [13] reported a speedup of 2.67 using

maerotasking for a three dimensional Navier-Stokes algorithm. These experi-

ments show that reasonable speedups can be achieved on these systems although

not in all cases. Clearly there is a need for more experiments in this field.

The work reported here was just such an experiment. A two dimensional

Navier-Stokes algorithm was implemented on the Cray-2 and Cray Y-MP using

two multitasking techniques: macrotasking and microtasking. Both techniques

are briefly described in section 2. The algorithm is briefly described in section 3.

The implementation of the algorithm using macrotasking and microtasking is

described in section 4. Section 5 contains the results of the implementation.

Finally, section 6 contains a comparison of performance of both techniques on

both machines and some concluding remarks.

2. The Cray-2 and Cray Y-MP Computer Systems

2.1. Hardware Overview

The Cray-2 is an MIMD supercomputer with four CPUs, a foreground pro-

cessor which controls I/O, and a main memory. The main memory has 256 mil-

lion 64 bit words organized in four quadrants of 32 banks each. Each CPU has

access to one quadrant during each clock cycle. The clock cycle is 4.1

nanoseconds. The results reported here were obtained using the new Cray-2

-2-



with a shorter main memory accesstime (80 ns DRAM) at NASA Ames

ResearchCenter.

The CrayY-MP architectureis anevolutionarystepfrom the Cray X-MP

seriesof computers. It has eight CPUs, 32 million 64 bit words of main

memory, and 256 million words of SSD memory. The main memory is organized

in four sections of 64 banks each. The first Cray Y-MP was delivered to NASA

Ames Research Center last August with a 6.3 nanosecond clock cycle. This work

was performed using this machine during the acceptance period.

2.2. Software Support

Both machines run the UNICOS operating system which is based on UNIX

System V. Under UNICOS, the four processors can operate independently on

separate jobs or concurrently on a single problem. The former mode is called

multiprogramming while the latter is called multitasking. Multiprogramming is

defined as a property of the operating system that permits overlapping and

interleaving the execution of more than one program. On both machines, indivi-

dual processors, scheduled in a multiprogramming mode, are treated as addi-

tional resources to be allocated to jobs. As a result, total system throughput

increases, but a single job will not see any special gain. Multitasking is defined

as the structuring of a program into multiple parts that can execute con-

currently. Performance gains result when these parts are run at the same time

on different processors of a multiprocessing system. Currently there are two

implementations of multitasking: macrotasking and microtasking.

°_-



2.3. Maerotasktng

Macrotasking is the process of partitioning a program into two or more

tasks at the subroutine level. The granularity of these tasks may be large. The

system software for both machines provide a library of Fortran-callable subrou-

tines that implements a basic set of primitive macrotasking functions [4]. These

subroutines are called by a macrotasked program as required to create and syn-

chronize task execution. Among these subroutines are: mtskstart(t,s),W to inb

tiate a task with identification t and subroutine s; mtskwait(t), w to wait for the

task t to complete execution; Wlockasgn(i), n to identify the integer variable I as

a lock; "lockon(l),' to set the lock i; and 'lockoff(l),' to clear the lock 1.

In addition, the Cray Fortran extensions for multitasking include a new

COMMON statement termed TASK COMMON. Data that is shared between

subroutines but which is local to a task should be kept in TASK COMMON

blocks.

2.4. Microtasking

Microtasking is the process of partitioning a program into parts at the do-

loop level. The granularity of these parts may be small. Microtasking is

specified by a number of user-supplied directives that appear as comment lines

[4]. A preprocessor, called premult, interprets the directives and then rewrites

the code to make microtasking library calls. The addition of the microtasking

directives does not reduce the portability of the code. Among these directives

are: Wgetcpus n, w to specify the number of processors permitted to work on the

program; Wmicro,W to designate a subroutine to be microtasked; Wdoglobal,n to

-4-



designate the start of a do loop whose individual iterations can be done in paral-

lel; 'process, w to mark the beginning of a block of code which can be executed

by only one processor; _alsoprocess,' to mark the end of one process and the

beginning of another; Wendprocess, _ to mark the end of a process; and mrelcpus, I

to release all the processors except one.

The portions of the code following doglobal and process primitives, where

multitasking can be done, are called control structures. There is an implicit syn-

chronization point at the bottom of every control structure. Unlike vectoriza-

tion, the scope of the variables used in the program should be given special con-

sideration. Global variables, like in common blocks or in a subroutine's argu-

ment list, may be modified only inside a control structure. Also, local variables

defined in a control structure cannot be relied on outside the control structure.

3. The numerical algorithm

The Navier-Stokes equations for the two-dimensional, time dependent flow

of a viscous incompressible fluid may be written, in dimensionless variables, as:

0u _v
-- + - O, (3.1)
Oz Oy

Ov au
- _, (3.2)

0z 0y

-- + _-_-(u /:) + _-_-(v _) = 1--_-VS _, (3.3)

Ot Oz Oy Re

where u = (u,v) is the velocity, _ is the vorticity and Re is the Reynolds

number.

Consider the problem of approximating the solution of equations (3.1) to

(3.3) in the square domain 0 <- z <- 1, 0 -< y -< 1 with the boundary conditions

5-



u --- 1 and v = 0 at y = 1 and u = v = 0elsewhere. The numerical method

used to approximate these equations is based on the compact differencing

schemes which require the use of only the values of the dependent variables in

and on the boundaries of a single computational cell [8]. Fatoohi and Grosch [7]

used this method to solve these equations on the MPP, Flex/32 and one proces-

sor of the Cray-2. This is done as follows: subdivide the computational domain

into rectangular cells. The center of a cell is at (i+1/2,j+1/2). Apply the cen-

tered difference operator to equations (3.1) and (3.2), which yields

8z Ui+l/_,j+l/2 + 6u Vi+t/2,j+l/_ = 0, (3.4)

_,Vi+I/_,J+I/_- _u Ui+I/_,J+I/_= _+I/_,j+I/_" (3.5)

The adaptationof thisalgorithmto parallelcomputers can be simplifiedby

the introductionof box variablesto representthe velocityfield.The box vari-

ablesare definedat the cornersof the cellsso that the average of two adjacent

box variablesis equal to the velocityfieldon the included side. The set of

differenceequationsand boundary conditionsin terms of the box variablesare

solvedusinga cellrelaxationscheme which isequivalentto an SOR method [8].

The compact differenceapproximation to equation (3.3)resultsin an implicitset

of equationswhich aresolvedby an ADI method [6].

In brief,the solutionprocedure for the Navier-Stokes equationsisas fol-

lows: with an assumed distributionof _ and one component of u prescribedon

the boundary, equations (3.1) and (3.2) are solved by the cell relaxation method.

A new distribution of _ is then determined by solving equation (3.3) by the ADI

method using boundary conditions for _ which are implied by the other com-

ponent of u prescribed on the boundary. A repetition of the above process then

-6-



yieldsthe velocityandvorticity at any later time.

4. Implementation

4.1. Maerotasking

The Navier-Stokesalgorithmwasmacrotaskedon the Cray-2and Cray Y-

MP for domains of sizes a x a grid points with a = 64, 128 and 256 and using

p processors where p -- 2, 4 or 8, for the Cray Y-MP. Also, the serial version

of the code was run on one processor of both machines for comparison. The

parallel implementation of the algorithm was done as follows. First, the domain

was decomposed vertically into n by n/p strips for implementing the relaxation

scheme, computing parameters and setting boundary conditions, and solving tri-

diagonal systems distributed over columns. Then the domain was decomposed

horizontally into n/p by n strips for solving tridiagonal systems distributed over

rows. The codes were written in Fortran augmented with subroutine calls to the

macrotasking library. Each strip was assigned to a task. The main program, or

initial task, initialized control variables for tasks and locks, started the process-

ing tasks, waited for them to complete, and performed the input and output

operations. The cell relaxation method was implemented by using a four color

reordering scheme, see [5] for details. The two sets of the tridiagonal systems

were solved by the Gaussian elimination algorithm for all systems of each set in

parallel [6]. The inner loops of all codes were fully vectorized.

In order to satisfy data dependencies between segments of the code running

many tasks, barriers were used. At a barrier, tasks must wait until every task

running the code arrives at that point. After all have arrived, one task executes

-7-



a section of sequential code, which may be null, after which all tasks exit the

barrier. The two lock barrier [1] was used in this work. This barrier was imple-

mented with two locks and a shared counter. Each time step required four bar-

riers for the ADI method, three barriers for computing parameters and setting

boundary conditions, and two barriers for each iteration of the relaxation

scheme.

4.2. Mierotasking

The Navier-Stokes algorithm was microtasked on the Cray-2 and Cray Y-

MP for the three domain sizes, as above, using p processors where p = 2, 3 or 4

for the Cray-2 and p = 2, 3, 4, 5, 6, 7 or 8 for the Cray Y-MP. The implemen-

tation was quite simple. All steps of the solution procedure were microtasked;

this includes the routines that take very small percentage of the total execution

time. A set of microtasking directives were inserted in the serial version of the

program. A total of 39 directives for the 64 x 64 problem and 55 directives for

the 128 x 128 and 256 x 256 problems were added to the program. No

changes in data scoping of variables were required, since mostly global variables

were used. It is worth mentioning that the codes remained portable after insert-

ing the microtasking directives. These microtasked codes can run on one proces-

sor of these machines as well as on any serial machine.

5. Results and Discussion

5.1. Maerotasking

The performance of the multitasked algorithms on both machines was

evaluated by using speedup and efficiency measures. Speedup was computed by

-8-



taking the ratio of the time to solvethe problemusingoneprocessorto thetime

to solvethe sameproblemusing p processors. Efficiency was determined by

taking the ratio of the speedup using p processors to p. Table I and II contain

the measured execution time during dedicated time, the processing rate, the

speedup and the efficiency for the 64 x 64, 128 x 128 and 256 x 256 problems

using macrotasking on the Cray-2 and Cray Y-MP, respectively. The execution

time represents the total time of all steps of the solution procedure, excluding

I/O, for ten time steps. The processing rate is computed by counting the addi-

tions, multiplications and divisions only; division is counted as a single opera-

tion. The total number of arithmetic operations for the multitasking cases is

the same as for the one processor case; no additional arithmetic operations are

involved in the overhead.

Number of Execution time Processing Rate Speedup Efficiency

processors (seconds) (MFLOPS) (_o)

64 x 64 grid points

1 2.589 113 - -
2 1.695 173 1.53 76.4

4 1.087 269 2.38 59.5

128 x 128 srid points

1 24.963 117 - -

2 13.981 209 1.79 89.3

4 7.837 374 3.19 79.6

256 × 256 grid points

1 231.548 117 - -

2 119.572 226 1.94 96.8

4 63.924 422 3.62 90.6

Table I. The execution time in a dedicated environment, processing rate,

speedup, and efficiency for the Navier-Stokes Algorithm on the Cray-2 using

macrotasking.

.g°



Numberof Executiontime ProcessingRate
processors (seconds) (M_FLOPS)

64 × 64 grid points

1 1.643 178

2 0.990 296
4 0.674 434

8 0.948 309

Speedup Efficiency

1.66 83.0

2.44 60.9

1.73 21.7

128 x 128 grid points

1 15.443 189

2 8.427 347 1.83 91.6

4 5.101 574 3.03 75.7

8 5.001 585 3.09 38.6

256 x 256 grid points

1 142.661 189

2 74.166 364 1.92 96.2

4 38.558 700 3.70 92.5

8 22.422 1203 6.36 79.5

Table II. The execution time in a dedicated environment, processing rate,

speedup, and efficiency for the Navier-Stokes Algorithm on the Cray Y-MP

using macrotasking.

For the one processor case, the processing rate on the Cray-2 ranges

between 113 and 117 MFLOPS. The latter represents about 24% of the peak

performance rate of a single processor of the Cray-2 (488 MFLOPS). The pro-

cessing rate on the Cray Y-MP for the one processor case ranges between 178

and 189 MFLOPS. The latter represents about 60_ of the peak performance

rate of a single processor of the Cray Y-MP (317 MFLOPS). This means that

one processor of the Cray Y-MP outperformed one processor of the Cray-2 by

about 60_o for this algorithm. The slight improvement in the processing rate

for the larger problems on both machines is due to the fact that the 64 × 64

problem has many short vectors while the other two problems have only long

vectors.

- 10-



Thehighestobtainedprocessingrate for the macrotaskedalgorithmon the

Cray-2was422MFLOPS. This is about 22% of the peakperformancerate of

the Cray-2(1951MFLOPS). The highestobtainedprocessingrate for the same

algorithm on the Cray Y-MP was 1203MFLOPS. This is about 47_ of the

peak performancerate of the Cray Y-MP (2540MFLOPS). This meansthe

CrayY-MP outperformedthe Cray-2by a factorof 2.85for this algorithmusing

macrotasking.

The results listed in Tables I and II presentthe best casetimes out of

manyruns in a dedicatedenvironment.Thereis a discrepancybetweenthetim-

ing results of the samejob especiallyfor small jobs (jobs on the order of

seconds)dueto a numberof factors. Amongthesefactorsare:the time to start

a task, whichmay take somewhere between few milliseconds up to few seconds

for eight tasks, and other activities on the system even in a dedicated environ-

ment. These differences range between 50_o for small jobs to less 1_o for big

jobs (jobs on the order of minutes).

As the number of processors in use was increased, the computation cost per

processor decreased, while the overhead cost increased. This caused a degrada-

tion in the efficiency of the macrotasked algorithm for eight processors on the

Cray Y-MP, especially for the small problems where no gain was achieved

beyond four processors. Increasing the number of the grid points caused an

increase by the same ratio in the computation cost and no change in the syn-

chronization and task starting costs. This resulted in the improvement on the

performance of the algorithm for the 256 × 256 problem.

- 11-



5.2. Mlerotuklng

TablelII and IV containthe measuredexecutiontime, the processingrate,

the speedup and the efficiency for the 64 × 64, 128 x 128 and 256 x 256 prob-

lems on dedicated time using microtasking on the Cray-2 and Cray Y-MP,

respectively. These parameters are computed as in section 5.1. A variation in

the timing results was also noticeable here for small jobs. The highest obtained

processing rate on the Cray-2 was 387 MFLOPS. This is about 20_o of the peak

performance rate of the Cray-2. The highest obtained processing rate on the

Cray Y-MP was 766 MFLOPS. This is about 30_ of the peak performance rate

of the Cray Y-MP. This means that the Cray Y-MP outperformed the Cray-2

by a factor of about 2 for this algorithm using microtasking.

Number of Execution time Processing Rate

processors (seconds) (MFLOPS)

64 x 64 grid points

1 2.589 113

2 1.622 180

3 1.250 234

4 0.952 308

Speedup Efficiency

(%)

1.60 79.8

2.07 69.0

2.72 68.0

128 x 128 grid points

1 24.963 117 - -

2 14.240 206 1.75 87.7

3 10.103 290 2.47 82.4

4 8.086 362 3.09 77.2

256 x 256 grid points

1 231.548 117 - -

2 125.079 216 1.85 92.6

3 88.208 306 2.63 87.5

4 69.663 387 3.32 83.1

Table III. The execution time in a dedicated environment, processing rate,

speedup, and efficiency for the Navier-Stokes Algorithm on the Cray-2 using

microtasking.

o 13-



Numberof
)rocessors

Executiontime ProcessingRate Speedup Efficiency
(seconds) (MFLOPS) (%)

64 x 64 _rid points

1 1.643 178
2 1.022 286 1.61 80.4

3 0.778 376 2.11 70.4

4 0.655 447 2.51 62.7

5 0.593 494 2.77 55.4

6 0.546 536 3.01 50.2

7 0.524 559 3.14 44.8

8 0.502 583 3.27 40.9

128 X 128 srid points

1 15.443 189 - -

2 9.168 319 1.68 84.2
3 6.904 424 2.24 74.6

4 5.723 511 2.70 67.5

5 5.087 575 3.04 60.7

6 4.654 629 3.32 55.3

7 4.315 678 3.58 51.1

8 4.088 716 3.78 47.2

256 X 256 grid points

1 142.661 189

2 81.783 330 1.74 87.2

3 61.029 442 2.34 77.9

4 50.459 535 2.83 70.7

5 44.523 606 3.20 64.1

6 40.568 665 3.52 58.6

7 37.724 715 3.78 54.0

8 35.224 766 4.05 50.6

Table IV. The execution time in a dedicated environment, processing rate,

speedup, and efficiency for the Navier-Stokes Algorithm on the Cray Y-MP

using microtasking.

The results listed in Table IV shows a steady improvement on the perfor-

mance of the Cray Y-MP when the number of processors in use was increased,

even for the small problem. This is because the granularity of the tasks is

independent on the number of processors used for microtasking.

- 18-



6. Comparisons and Concluding Remarks

The Cray Y-MP, based on its peak performance rate, is faster than the

Cray-2 by only 30_. Moreover, each processor of the Cray-2 is supposed to be

faster than each processor of the Cray Y-MP by more than 50_ (6.3/4.1). How-

ever, the results listed in Tables I through IV showed that the Cray Y-MP out-

performed the Cray-2 for this algorithm by factors of 1.6, 2.85, and 2 using one

processor, macrotasking, and microtasking respectively. This can be attributed

to the slower main memory performance on the Cray-2. More specifically, there

is only one path to main memory, and the DRAM chips in main memory are

quite slow. The obtained speedups on both machines using few processors are in

general comparable. The additional four processors on the Cray Y-MP, com-

pared to the Cray-2, helped in achieving better performance for this algorithm.

This was significant for the 256 x 256 problem using macrotasklng where a pro-

cessing rate of 1.2 GFLOPS was achieved, compared to 700 MFLOPS for the

four processor case. However, for the smaller problems using macrotasking and

for microtasking the improvement in the performance of the Cray ¥-MP using

more than four processors was less significant.

As shown in Tables I through IV, the macrotasked algorithm outperformed

the microtasked algorithm for the 256 × 256 problem on both machines while

the latter outperformed the former for the smaller problems using eight proces-

sors. The results for the other cases were in general comparable. The

differences between both techniques are more significant on the Cray Y-MP than

on the Cray-2. Microtasking outperformed microtasking on the Cray Y-MP by

about 89_o, for the 64 × 64 problem using eight processors, while macrotasking

- 14°



outperformedmicrotaskingby about 57_, for the 256 × 256 problem using

eight processors. These differences can be attributed to the granularity of the

tasks and the overheads involved in synchronizing these tasks. Both techniques

proved to be effective in multitasking the algorithm. The major attributes of

microtasking are: ease of implementation, portability, and better performance

for small granularity. On the other hand, macrotasking provides more control

over synchronization and better performance for large granularity. Macrotask-

ing requires considerable effort for controlling and synchronizing the tasks.

Microtasking, on the other hand, requires less effort and is similar to vectoriza-

tion except that special attention should be made to the scope of the variables

used in the program. Both macrotasking and microtasking, like vectorization,

may require a restructuring of the algorithm to achieve better performance.

These results and analysis reported here were for a single algorithm. More

experiments may be needed to provide a better understanding of the different

factors influence the performance of these techniques on both machines. A new

multitasking technique, called autotasking, will also be exploited and the results

will be compared with the results reported here.

- 15-



References

[I] Axelrod,T. S., NEffects of Synchronization Barriers on Multiprocessor Per-

formance, w J. Parallel Computing, 3, 1986, 129-140.

[2] Bieterman, M., WMicrotasking General Purpose Partial Differential Equation

Software on the CRAY X-MP, w Report ETA-TR-68, Boeing Computer Ser-

vices, 1987.

[3] Chen, S. S., Dongarra, J. J., and Hslung, C. C., WMultiprocessing Linear

Algebra Algorithms on the CRAY X-MP-2: Experiences with Small Granu-

larity, w J. Parallel _ Distributed Computing, I, 1984, pp. 22-31.

[4] Cray Research, Inc., "Cray-2 Multitasking Programmer's Manual," Publica-

tion SN-2026 B, June 1988.

[5] Fatoohi, R. A. and Grosch, C. E., "Implementation of a Four Color Cell

Relaxation Scheme on the MPP, Flex/32 and Cray/2," Proc. 1987 Int.

Conf. Parallel Processing, pp. 424-426.

[6] Fatoohi, R. A. and Grosch, C. E., Wlmplementation of an ADI Method on

Parallel Computers," J. Scientific Computing, Vol. 2, No. 2, 1987, pp. 175-

193.

[7] Fatoohi, R. A. and Grosch, C. E., "Implementation and Analysis of a

Navier-Stokes Algorithm on Parallel Computers," Proc. 1988 Int. Conf.

Parallel Processing, Vol. Ill, pp. 235-242.

[8] Gatski, T. B., Grosch, C. E., and Rose, M. E., "A Numerical Study of the

Two-Dimensional Navier-Stokes Equations in Vorticity-Velocity Variables, w

J. Comput. Phys., Vol. 48, No. I, 1982, pp. 1-22.

° 16-


